Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sundari Bhaskaran, ${ }^{\text {a }}$

M. Yogavel, ${ }^{\text {a }}$ V. Rajakannan, ${ }^{\text {a }}$
R. Krishna, ${ }^{\text {b }}$ D. Velmurugan ${ }^{\text {a }}{ }^{*}$ and V. Raghukumar ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012 , India, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.067$
$w R$ factor $=0.196$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Amino-4-(4-dimethylaminophenyl)-2-(4-methoxyphenyl)-7-(pyrrolidin-1-yl)-1,6-naphthyridine-8-carbonitrile

In the title compound, $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}$, the naphthyridine moiety is planar and the pyrrolidine ring adopts a half-chair conformation. The dimethylaminophenyl substituent is nearly orthogonal to the naphthyridine moiety, while the methoxyphenyl ring is twisted from it by $11.3(2)^{\circ}$. The molecular structure is stabilized by an $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction. In the solid state, the inversion-related molecules are linked to form N $\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded dimers. The molecular packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

Naphthyridine derivatives have a wide range of biological activities, such as anti-inflammatory, anticonvulsant (Balogh et al., 1986), insecticidal (Takeuchi \& Hamada, 1975), antitumour (El-Subbagh et al., 1999), tuberculostatic (Ferrarini et al., 1998), cardiotonic (Mohan \& Mishra, 1997) and antibacterial (Datta et al., 1995). They have been reported as potential drugs for the treatment of bladder function disorders (Natsugari et al., 1999). The naphthyridine derivatives also act as dyes (Irikawa \& Iijima, 1998). Since naphthyridine derivatives belong to the class of heterocyclic compounds, it is expected that they possess laser and non-linear optical properties (Lowe, 1984; Shanmugasundaram et al., 1993; Murugan et al., 1998). 1,6-Naphthyridine derivatives have been tested pharmacologically as antagonists at adrenoreceptors (Brown et al., 1993) and are also used as novel potent adenosine $3^{\prime}, 5^{\prime}$ cyclic phosphate phosphodiesterase III inhibitors (Singh et al., 1995). The structure analysis of the title compound, (I), was carried out as part of our studies on 1,6-naphthyridine derivatives (Sankaranarayanan et al., 1999, 2001; Govindasamy et al., 2000).

(I)

The five rings of the molecules are $A(\mathrm{C} 5 / \mathrm{N} 6 / \mathrm{C} 7-\mathrm{C} 10), B$ (N1/C2-C4/C10/C9), C (C19-C24), D (N14/C15-C18) and E (C27-C32). The pyrrolidine ring adopts a half-chair conformation, confirmed by its ring-puckering parameters (Cremer \& Pople, 1975); $q_{2}=0.296$ (6) \AA and $\varphi=93.2(9)^{\circ}$, and

Received 2 January 2003 Accepted 14 January 2003 Online 24 January 2003

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 35% probability level.

The molecular packing, viewed down the a axis.
asymmetry parameters $\Delta C_{2}(\mathrm{~N} 14)=0.009$ (2) (Nardelli, 1983). The naphthyridine moiety is planar, the fused pyridine rings (rings A and B) forming a dihedral angle of $2.9(1)^{\circ}$. The mean planes passing through phenyl rings C and E make dihedral angles of 12.7 (1) and $87.0(2)^{\circ}$, respectively, with ring B. The mean plane through the pyrrolidine ring (D) makes a dihedral angle of $13.7(4)^{\circ}$ with the pyridine ring (A). The orientation of the substituents on the 1,6 -naphthyridine ring may be determined from the torsion angels: $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 19-\mathrm{C} 20$ $\left[-12.5(7)^{\circ}\right], \quad \mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 19-\mathrm{C} 24 \quad\left[-13.4(8)^{\circ}\right], \quad \mathrm{C} 3-\mathrm{C} 4-$ C27-C28 [-91.5 (6) ${ }^{\circ}$, $\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 27-\mathrm{C} 32\left[-94.1(7)^{\circ}\right]$, $\mathrm{N} 6-\mathrm{C} 7-\mathrm{N} 14-\mathrm{C} 15 \quad\left[3.8(7)^{\circ}\right]$ and $\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 14-\mathrm{C} 18$ [8.5 (9) ${ }^{\circ}$]. The methoxy group is coplanar [C21-C22-O25$\mathrm{C} 26=-179.6(5)^{\circ}$] with the attached phenyl ring (C).

The bond distances and angles are comparable with related structures studied previously (Chinnakali et al., 1998; Sankaranarayanan et al., 1999, 2001; Govindasamy et al., 2000;

Thirumurugan et al., 1999). The bond distance C5-N11 [1.346 (6) \AA] is shorter than the typical $\mathrm{C}-\mathrm{N}$ single-bond distance $(1.47 \AA)$, as in the other related structures, indicating conjugation of the amino group with the aromatic naphthyridine moiety. The sum of the bond angles around atom N14 is $359.8(4)^{\circ}$, indicating $s p^{2}$ hybridization. The sum of the bond angles around atom N 33 is $349.8(4)^{\circ}$, indicating pyramidalization. The cyano bond distance $\mathrm{C} 12-\mathrm{N} 13[1.148$ (6) \AA] and the angle $\mathrm{C} 8-\mathrm{C} 12-\mathrm{N} 13\left[177.3(6)^{\circ}\right]$ are comparable with values in related structures. Due to steric interactions, the bond angles $\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5 \quad\left[127.2(4)^{\circ}\right], \quad \mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 14$ [125.4 (5) ${ }^{\circ}$] and $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 19$ [122.4 (5) ${ }^{\circ}$] are widened from 120°, while angles $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8\left[116.8(4)^{\circ}\right]$, $\mathrm{N} 14-\mathrm{C} 7-\mathrm{N} 6$ [113.3 (5) ${ }^{\circ}$] and $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 19\left[116.5(4)^{\circ}\right]$ are narrowed from 120°.

One of the amino H atoms, $\mathrm{H} 11 B$, is involved in an intramolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction $[\mathrm{N} 11-\mathrm{H} 11 B=0.86 \AA$, $\mathrm{H} 11 B \cdots C g(E)=2.63 \AA, \mathrm{~N} 11 \cdots C g(E)=3.470(3) \AA$ and $\mathrm{N} 11-\mathrm{H} 11 B \cdots C g(E)=166^{\circ}$, where $C g(E)$ is the centroid of ring $E]$. The other H atom, $\mathrm{H} 11 A$, is involved in the formation of centrosymmetrically hydrogen-bonded (N11-H11A... N33) dimers in the solid state $[\mathrm{N} 11-\mathrm{H} 11 A=0.86 \AA$, $\mathrm{H} 11 A \cdots \mathrm{~N} 33^{\mathrm{i}}=2.25 \AA, \mathrm{~N} 11 \cdots \mathrm{~N} 33^{\mathrm{i}}=3.106(6) \AA$ and $\mathrm{N} 11-$ $\mathrm{H} 11 A \cdots \mathrm{~N} 33^{\mathrm{i}}=173^{\circ}$; symmetry code: (i) $\left.1-x,-y, 1-z\right]$. The B ring of the molecule at (x, y, z) and E ring of the molecule at $(-x,-y, 1-z)$ are arranged in a face-to-edge manner, with their centroids separated by 4.741 (3) A. Apart from these interactions, the molecular packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $[\mathrm{C} 28-\mathrm{H} 28=0.93 \AA$, $\mathrm{H} 28 \cdots C g(A)=2.58 \AA, \mathrm{C} 28 \cdots C g(A)=3.443$ (6) \AA and $\mathrm{C} 28-$ $\mathrm{H} 28 \cdots \operatorname{Cg}(A)=155^{\circ}$, where $\mathrm{Cg}(A)$ is the centroid of ring A at $(-x,-y, 1-z)]$.

Experimental

Refluxing a solution of 3-(4-dimethylaminophenyl)-1-(4-methoxy-phenyl)-prop-2-en-1-one ($0.5 \mathrm{~g}, 1.77 \mathrm{mmol}$), malononitrile (0.23 g , $3.48 \mathrm{mmol})$ and pyrrolidine ($0.25 \mathrm{~g}, 3.52 \mathrm{mmol}$) in ethanol for 19 h gave the title compound. Single crystals were grown by slow evaporation of a solution in ethanol-ethyl acetate (1:1). The melting point of the title compound is $491-493 \mathrm{~K}$.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}$
$M_{r}=464.56$
Triclinic, $P \overline{1}$
$a=10.671$ (2) \AA
$b=10.974$ (1) \AA
$c=11.826$ (2) \AA
$\alpha=82.82(1)^{\circ}$
$\beta=64.04(1)^{\circ}$
$\gamma=78.32(1)^{\circ}$
$V=1218.3(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.266 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \text { K } \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=10-35^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, yellow
$0.48 \times 0.34 \times 0.28 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 5192 measured reflections 4789 independent reflections 1438 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.100$
$\theta_{\text {max }}=71.9^{\circ}$
$h=-12 \rightarrow 13$
$k=0 \rightarrow 13$
$l=-14 \rightarrow 14$
3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.196$
$S=0.90$
4789 reflections
319 parameters $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0694 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}^{\mathrm{max}}{ }^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

After location in a difference map, all H atoms were positioned geometrically and allowed to ride on their attached atoms using SHELXL97 (Sheldrick, 1997) defaults for bond lengths and displacement parameters. The high $R_{\text {int }}$ value (0.1) and low ratio (0.3) of observed to unique reflections may be a result of the poor diffraction quality of the crystal.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST), India, is gratefully acknowledged.

References

Balogh, M., Hermecz, I., Naray-Szabo, G., Siemen, K. \& Meazaros, Z. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 753-757.

Brown, C. M., MacKinnon, A. C., Redfem, W. S., Hicks, P. E., Kilpatrick, A. T., Small, C., Ramacharan, M., Clague, R. U., Clark, R. D. \& MacFarlane, C. B. (1993). Br. J. Pharmacol. 108, 516-525.

Chinnakali, K., Fun, H.-K., Razak. I. A., Murugan, P. \& Ramakrishnan, V. T. (1998). Acta Cryst. C54, 781-783.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Datta, M., Hannan, S. S. \& Talukdar, A. N. (1995). Acta Cryst. C51, 978-980.
El-Subbagh, H. I., Abadi, A. H., Al-Khawad, I. E. \& Al-Rashood, K. A. (1999). Arch. Pharm. (Weinheim), 332, 19-24.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Ferrarini, P. L., Manera, C., Mori, C., Badawneh, M. \& Soccomanni, G. (1998). Farmaco, 53, 741-746.
Govindasamy, L., Velmurugan, D., Raghukumar, V., Suh, H.-I. \& Ramakrishnan, V. T. (2000). Acta Cryst. C56, 80-81.
Irikawa, H. \& Iijima, K. (1998). Acta Cryst. C54, 1318-1320.
Lowe, P. A. (1984). Comprehensive Heterocyclic Chemistry, Vol. II, pp. 581620. New York: Pergamon Press.

Mohan, C. G. \& Mishra, P. C. (1997). Indian J. Biochem. Biophys. 34, 429-434.
Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. \& Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Natsugari, H., Ikeura, Y., Kamo, I., Ishimaru, T., Ishichi, Y., Fujishiman, A., Tanaka, T., Kasahara, F., Kawada, M. \& Doi, T. (1999). J. Med. Chem. 42, 3982-3993.
Sankaranarayanan, R., Shanmuga Sundara Raj, S., Velmurugan, D., Fun, H.K., Raghukumar, V. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 16701672.

Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S. \& Fun, H.K. (2001). Acta Cryst. C57, 726-727.

Shanmugasundaram, P., Prabahar, K. J. \& Ramakrishnan, V. T. (1993). J. Heterocycl. Chem. 30, 1003-1007.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singh, B., Bacon, E. R., Lesher, G. Y., Robinson, S., Pennock, P. O., Bode, D. C., Pagani, E. D., Bentley, R. G. \& Connell, M. J. (1995). J. Med. Chem. 38, 2546-2550.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Takeuchi, I. \& Hamada, Y. (1975). Chem. Phar. Bull. 24, 1813-1821.
Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K.,
Raghukumar, V. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1522-1524. Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

